
AO-AO98 315 HARRY DIAMOND LABS AOELPHI MD F/G 7/A4
CUTOFF THEORY OF IMPACT BROADENING AND SHIFTING OF MICROWAVE AN--EYCfl
JAN 81 R P LEAVITT, D KOAFF

UNCLASSIFIED HL- TRIQRI1NLnnFEEEEEuumEEEEEm
EIIIEIIEEEEIIE
lflflflflflflflflflfll



"4" 1.2 1112.

1111 II .

111N111. ~ j14 j11j1.6

MICROCOPY RESOLUTION TEST CHART

NATIONAL URHJ Ak OF A TAN[lApRDl I q, A

ilI " P AI



A



-' - V



UNCLASSIFIED
SECURITY CLASSIFICATIO)N OF THIS PAGE (WMon Daso Entered)

PAGE READ INSTRUCTIONSREPORT DOCUMENTATION PAEBEFORE COMPLETING FORM
IREPORT NUMBER 2. GOVT ACCESSION NO. RECIPIENT'S CATALOG NUMBER

I.HDL-TR-194 , - P.8J__________
4. TITLE (and Subtfttj. D ... ~- . TYPEr OF REPORT 6 PERIOD COVERED

Ctoff The r --f ~p act Broadening an)
Shifting of Microwave and Infrared Technical eprt.
Molecular Specr d-----. PERFORMING-ORG. REPOR NUMBER

7. AUTHCR(a) S. CONTRACT WRTYT NUMBER(.)

;Richard P/eavitt DA ProjeC FlLl61ll;lA9l )
a. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT. TASK

Harry Diamond Laboratories AE OKUI UBR

2800 Powder Mill RoadPrga l:61A
Adelphi, MD 20783PrgaEe: 61A

It. CONTROLLING OFFICE NAME AND ADDRESS

US Army Materiel Development and a"6I8
Readiness Command '- -- ITNUMBER OFPG

Alexandria, VA 22333 55 FPAGE
14. MONITORING AGENCY NAME & ADORESSQIf different Iro. Controlling Office) IS. SECURITY CLASS. ( 00report)

UNCLASSIFIED

Is. DECLASSIFICATION/DOWNGRAOING
SCHEDULE N/A

16. DISTRIBUTION STATEMENT (of thle Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abotrect entered in Block 20. it different from, Report)

IS. SUPPLEMENTARY NOTES

DRCMS Code: 61110191A0011
HDL Project: A10033

IS. KEY WORDS (Continue an reverse *Ide it necoeary and identify by block num.ber)

Molecular collisions
Near-millimeter waves
Spectral line shapes
Pressure broadening

ft2 Ad&,Acr F(mto, e revs as, m Noe,.eeiy and tdewiify by black nmber)

____ An impact theory is described for pressure broadening and
shifting of rotition-vibration lines using a natural cutoff. The
theory is based on Anderson's theoretical framework and employs
an exponential expansion of the collision matrix elements derived
from a linked cluster theorem for degenerate states. The final
expression for the interruption function is similar in form to
Gordon's semiclassical interruption function. Closed-form

DDIJA 1 9"110 r 1V sis011OEE UNCLASSIFIED*'

Ic -IsECunTry CLASSIFICATION OF THIS PAGE (when Date Entered)A



UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGC(Whfn Date Enetmd)

20. ABSTRACT (Cont'd)

expressions for the broadening and shift cross sections are given
for exactly resonant dipole-dipole collisions, and an exact
calculation for the HCI self-broadening in the 0 to 2 vibrational
band.

\

TOT

GRA&I
OTAB
-ounced

;tlfijt'ict.

\ j-Avail arid/or
D15t Special

UNCLASSIFIED
~ SECURITY CLASSIFICATION OF THIS PAGE'IVAen Dato Etomo.)



CONTENTS

1. INTRODUCTION .................................................... 5

2 . GENERAL DERIVATION ............................................. 10

2. 1 Properties of T-matrix ..................................... 10
2.2 Evaluation of Various Terms in Expansion ..... .............. 16
2.3 Evaluation of S(b) ......................................... 19

3. EVALUATION OF S(b) FOR HARMONIC EXPANSION OF POTENTIAL .......... 20

4. THE LINKED CLUSTER THEOREM....................................... 27

5. COMPARISON TO EARLIER IMPACT THEORIES ............................ 36

6. THEORY AND CALCULATIONS ........................................... 41

6.1 Diagrammatic Representation .............................. 41
6.2 Shape of S(b) ............................................. 43
6.3 Evaluation of Cross Sections for Special Cases ............... 44
6.4 Exact Calculation for HCL Self-Broadening .................. 48

7. CONCLUSIONS .................................................... 50

ACKNOWLEDGMENTS .................................................. 50

LITERATURE CITED .................................... ............... 51

DISTRIBUTION .......... .................... 53

FIGURES

I Diagrammatic representation of intermolecular interaction ........ 42

2 Shape of interruption function .................................... 43

3 Self-broadened halfwidths of HC1 ................................. 49

TABLES

I Molecular Parameters used in the Calculations .................... 49

2 Comparison of Experimental and Theoretical Results for HCi Self-
Broadening... °.°, ...o......o..................................... 49

3



1. INTRODUCTION

Since the publication of Anderson's classic paper, 1  questions

concerning impact theories of pressure broadening in the microwave and

infrared regions have shifted from the realm of the foundations of the

impact theory. Attention is now concentrated on such areas as the

convergence of the various terms in Anderson's expansion and the

extension of the theory to include broadening of vibration-rotation

lines, as well as the pure rotation lines addressed by Anderson. The

solutions of these problems, particularly the former, have not been

entirely satisfactory. Several ad hoc cutoffs have been introduced into

Andersons's theory, 1- 3 and although these have agreed well with each

other and with experiment, their differences are sufficient to warrant

further examination.

In an attempt to resolve these problems, Murphy and Bogqs4 have

developed a theory which begins with a different theoretical framework

from Anderson's, and which introduces a natural cutoff from the

outset. This theory has several drawbacks, however. First, the cutoff

depends on the azimuthal quantum numbers of the radiating and perturbing

molecules. This requires an involved machine computation to evaluate

certain m-sums occurring in the theory. Second, the theoretical

foundation of the theory is not as clear as that of Anderson; no of f-

diagonal matrix elements of the time-evolution operator occur in Murphy

and Boggs' theory, and it is not clear how these are to be introduced

into their framework.

1P. W. Anderson, Phys. Rev., 76 (1949), 647.

2p. W. Anderson, PhD Dissertation, Harvard University (1949).
3R. D. Sharma and G. E. Caledonia, J. Chem. Phys., 54 (1970), 434.
4 J. S. Murphy and J. E. Boggs, J. Chem. Phys., 47 (1967), 691.
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Gordon has given a nonperturbative semiclassical theory, 5 which

includes all the important effects of molecular collisions: phase

shifts, inelastic collisions, and molecular reorientation (the Murphy-

Boggs theory does not include the third of these effects). However, in

order to evaluate pressure-broadening cross sections from his theory,

Gordon is forced into a rough guess for the probability of elastic

collisions (because he treats the angular momentum as a continuous

variable). Thus, Gordon's theory, while satisfactory from a theoretical

point of view, does not allow accurate calculations of pressure shifts

and broadening.

What we propose is an impact theory of pressure broadening and

shift, based on Anderson's framework, and containing a natural, m-

independent cutoff. The theory is similar to that of Murphy and Boggs,

except that it explicitly exhibits the correct rotational symmetry. The

theory is expressed from the outset in terms of the group-theoretical

properties of the interaction Hamiltonian between the radiating and

perturbing molecules. In this way it is possible to formulate the

theory in a very general manner, allowing for complicated interactions

between the two molecules. The final form of the theory is shown to be

similar to the form of the semiclassical theory of Gordon.

Our starting point will be the general relations given by Anderson1

and rederived by Tsao and Curnutte. 6  In particular, we use equations

(79) and (80) of Tsao and Curnutte:

nv

A= -- c cm-I  (1)
2wc

1P. W. Anderson, Phys. Rev., 76 (1949), 647.
5R. G. Gordon, J. Chem. Phys., 44 (1966), 3083.
6C. J. Tsao and B. Curnutte, J. Quant. Spect. Rad. Trans., 2 (1962),

41.
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for the line shift, and

= -- n r  cm "1  (2 )( 1) /2 2-cnv

for the pressure-broadened half-width. In the above, n is the perturber

density and v is the relative velocity between colliding molecules. The

question of averaging equations (1) and (2) over a Maxwell-Boltzmann

distribution of relative velocities will be addressed later. For now,

we simply take v as the average velocity.

Anderson gives the following expression for the cross section:

a= ar+ iai  I 2J J (3)o Or -- p 2 J2 dj2

J
2

where

a 2 = 2r b db SJ(b) (4)

and where J2 is the rotational angular momentum of the perturbing

molecule, and b is the impact parameter. The latter two equations are

equations (74) and (87) of Tsao and Curnutte. 6  The quantity PJ2J2 is a
diagonal element of the density matrix for the perturber, given by

Pj2J 2= (2J 2 + I) exp [-ej /kT]/ (2J 2 + I) exp[-J2/kT] (5)
L ~ 2/J2

6C. J. Tsao and B. Curnutte, J. Quant. Spect. Rad. Trans., 2 (1962)

7
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where eJ2 is the energy of the perturber rotational state J 2 The
function SJ 2 (b) is given by equation (88) of Tsao and Curnutte:

S(b) = 1 <i (I(M +J(~ ~ (;'M i\/2j2 + 1 (6)

all MJ3I+2 (2J
x <JfMfJ2M2 IT'(b) IJfMiJM> <Jil4JJ;M IT~b) IJ1 MjJ 21 2 >

In the above, the subscripts i and f refer to initial and final states

of the radiative transition, and primed and unprimed quantities refer to

states after and before the collision, respectively. The quantity

<Jf(Mf)1(M)IJi(Mi)> is an unsymmetrized vector-coupling coefficient

(Clebsch-Gordan coefficient), and T(b) is the time-evolution operator

for collisions with an impact parameter b. This operator obeys the

differential equation

i dT(b;t) V(b;t) T(b;t) , (7)

subject to the initial condition

T(b;--) = 1 (8)

and

T(b) F T(b,-) • (9)

8

a
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V(t) is the interaction Hamiltonian between radiator and perturber in

the interaction representation

"V(bt) = exp[-HOt/iB] V(t) exp[Hot/i] , (10)

where H0 is the unperturbed Hamiltonian [H0 (1) + H0 (2)] of radiator and

perturber. The operator V(t) is given in terms of operators depending

on molecules 1 and 2 (radiator and perturber, respectively), and

contains an explicit time dependence due to the changing distance and

relative orientation between the two molecules. This is the classical

path assumption. We have suppressed the b-dependence in V(t); such

dependence will be understood throughout the following.

We take equations (1) through (10) as our starting points, as does

Anderson's theory. However, Anderson goes one step further and solves

(7) via the usual perturbation method. He obtains

<mIT(b) In>= 6 + - f dtj <mIv(tl) In>mn in dtI <m(ln

(11)

+ dtj dt2  <mI V(tIk><klV(t 2 ) In> +

where we have used the shorthand notation (m) to stand for the states

(JMIJ2M2). Anderson substitutes expression (11) into equation (6) to

obtain his final result for SJ2 (b). When this expression is used, the

integral of equation (4) over impact parameter diverges due to the small

b behavior of the T-matrix elements.

9



In order to remove this divergence in a natural manner (i.e.,

without introducing any additional ad hoc assumptions), we shall obtain

an alternative expansion to (11) for the matrix elements of the T(b)

operator. To do this we examine the rotational and time-reversal

symmetries of the interaction Hamiltonian and the consequences of these

symmetries for a T-matrix element with an exponential cutoff factored

out. By matching this exponential expansion with the expansion of

equation (11), we can unambiguously determine all the terms in the

expansion. We also show that the exponential expansion is equivalent to

summing all closed-loop graphs in a graphical representation of the

theory by use of a linked cluster theorem.

2. GENERAL DERIVATION

2.1 Properties of T-matrix

We begin our derivation of the exponential cutoff theory by

postulating the following form for the T-matrix elements.

<NJ;MflM'TI 1 1 1J2M 2 > = AJM,J.M';J M J M
12 2 1 12 2

(12)

x exp [ M J M

where the quantities A and B are yet to be determined. As in the

introduction, we explicitly label the states according to their

rotational properties; vibrational and electronic quantum numbers will

be suppressed in what follows. We also assume that A and B are expanded

in a power series in the interaction potential. If the right-hand side

10



1

of equation (12) were expanded out and matched term by term with

expression (11), a system of equations would result for the A (n)and

B (n )  [A(n ) represents the nth term in the power-series expansion for

A, and similarly for B (n)1. However, the first n of these equations

would contain 2n unknowns; that is, A (k ) and B(k ) for k = 0,1, ...,n- .

1. Therefore, some other conditions on the A (n ) and B (n ) are necessary

to determine them uniquely.

First we note that equation (12) must be substituted into

equation (6) to obtain S(b), and summations must be carried out over the

M quantum numbers. To do this in closed form, the M dependence in (12)

must be of the form of vector-coupling coefficients or products of

vector-coupling coefficients, and these must occur in A and not in B.

If this is the case, we may use the well-known properties of the V-C

coefficients to carry out the M-summations. Therefore, we postulate the

relation

BJI MJMI JMJ = B only .(13)

J1 12'1M1j22 1 2' 1 2

This relation implies that the quantity BjjI J1 2 is rotationally

invariant; in the language of group theory, it is constructed from

combinations of the interaction Hamiltonian which transform like

irreducible tensors of rank zero under rotations of molecule 1 or

molecule 2.

For our second relation, we examine the time-reversal symmetry

of the interaction Hamiltonian. We assume that the interaction

Hamiltonian may be expanded in terms of spherical harmonics in the

.ector R(t) between the two molecules.

La



V (t) A 1, ALItl 2) Y Le(t,(t)] fL[R(t)] (14)
L, ji

where AL'U(1, 2 ) is a time-independent operator.

To study the time-reversal properties of (14), we must make

some assumptions about the path of molecule 2. It is usually assumed

that the molecule travels in a straight line relative to molecule 1;

this is usually a good approximation. However, we need not be so

stringent, since we wish to keep the theory as general as possible. We

shall assume, however, that the translational motion of the two

molecules is governed by central forces, and that the noncentral part of

the potential will have negligible effect on the translational motion.

If this is the case, then the orbit of molecule 2 relative to molecule 1

will be symmetric about the point of closest approach, which we label by

the vector r0. To demonstrate the effect of this orbit symmetry on the

symmetry of the interaction Hamiltonian (14), we construct a specific

coordinate system in which the z-axis is coincident with the

vector r0 and the motion of molecule 2 is in the y-z plane. We also

take the vector R(O) = LO so that the orbit is symmetric about the time

t = 0 in the following way.

R(-t) = R(t) (15a)

e(-t) = 6(t) (15b)

= (t) + , (15c)

12



where e(t) and 0(t) are the usual polar angles of the vector R(t) with

respect to the coordinate system. For this special choice of coordinate

system, we have

YL[e(-t), -t)] YL[(t), *(t)] . (16)

Therefore

(17)

=<jil4j; JVI(t)Iji M 1J2 M2>

To see the consequences of this relation, we examine the perturbation

expansion, (11). By reversing the order of integrations and by using

the hermiticity relation,

<nIV(t) Im> = <mI(t)In>* (18)

and by changing the signs of all the integration variables, we arrive at

the relation

<nlTlm>= 6 +m1 m I -t) n* +nm dt I m1  +(tl >
rimr

(19)

+ (1)2 dt dt 2  <mV(-t) Ik>*<klV(-t 2 )In>* +

k

13



Substitution of (17) into (19) yields the relation

<JIMIJ M ITIJ 1 MJ 2M2 >=(J MiJ 2M2 TI J'M' > (20)

Referring to equation (12), we demand that (20) hold separately for each

of the quantities A and B. The relation (20) holds for T only in the

specific coordinate system described above. However, since B is

rotationally invariant, the symmetry (20) will hold for B in any

coordinate system, and we may write

Bj~~j~B ;J JI * (21)
12 12 1J2 1'2

Having determined the symmetry of B upon exchange of initial

and final states we now impose a futher requirement

Bj~jj;ij 2 = (BjlJ2+ Bjlj ) /2 (22)

which satisfies (21) and has the additional property that the B part of

the T-matrix factors into two parts, one involving the initial state and

the other involving the final state. Equation (22) is convenient, but

not absolutely necessary to the development of the theory. This

somewhat arbitrary decomposition will be shown below, in any event, to

affect only a restricted class of contributions to the interruption

function S(b).

14



In order to obtain a condition on the A's, we investigate the

rotational properties of the T-matrix. We assume that T may be expanded

in terms of unit irreducible tensors in the spaces of particles 1 and 2:

T I Tklk2 Ukl(1) Uk2( 2 ) . (23)
kjjq, q2klq1

k2q2

(These unit tensors are defined such that the reduced matrix elements

between any states are unity.) We may then calculate the matrix

elements of T:

ITIJ M J 2 M 2 > <JJ1 i iTklk21 10J 2 ><IfM31 1JM: 2> =k

(24)

x (1(M)k 1 M~- Ml)IJ'l M'1>(<J2(M) 2 (M2 - M2)IJ2 ~

And we may perform a sum over the M's to obtain

MIM <JI M1 J 2 M2 ITIJ 1 M1J2 M2 >
1 2 (25)

=(21 1 + I )(2J 2 + 1 ) (J1J21 1T
001 1J1J2> *

This states the well-known result that the average of the diagonal

matrix elements of an operator within the subspace (J J 2) is equal to

the part of the operator which is invariant under rotations; i.e., a

scalar in the separate spaces of molecules 1 and 2. We impose the

constraint that

A (n) (2J, + 1)2J2 + I) 
6n0 (26)

MIM2  JI 1J2 M2 ;J I JM 2 I / /

15
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where A n  is the nth order term in the power series expansion of A, and

that the zeroth order term A (0) is invariant under rotations (is in fact

equal to the unit matrix). All the other terms in the expansion of A

contain no part which is invariant under rotations. Referring again to

equation (12), we see that (25) and (26) imply

exp[B 1j2] = (J1J211T001J 1J2 > .(27)

Therefore, BJiJ2 is an exponential expansion of the rotationally

invariant portion of the T-matrix element.

2.2 Evaluation of Various Terms in Expansion

We are now in a position to evaluate the various A(n ) and

(n) th
B(n). By expanding the exponential in (12) to the n order and

matching the kth order terms obtained thereby with the kth order term in

equation (11), we find

[A ep dt 1 tn-1d ( n

[Ak expIBmk]n= f "t " f n(M

(28)

L ,p,..

where (In means the n term in the expansion of the quantity within the

brackets. This equation, together with equations (22) and (26), is

sufficient to determine the A( n ) and B( n ) to arbitrary order. We shall
evaluate the quantity A to first order and B to second order, and then

16



II

state a general prescription for arbitrary order (the reason for

evaluating A to one less order than B will become clear shortly).

We set B (0 ) 
= 0. Then we obtain

AMJ7S; 7JIM = 
6J J'6J J'Mt167 4 (29)

112J2 112 1 22 11 622

as stated earlier. The first-order term gives

A(1.J M J H iJ J , J 6 M M16M M B'J J
122 1122 11 22 1 22 11

(30)

= i :dt1 (J M '2MV(t 1) IJIMI 1 2 2>

Setting (J JHM) = (JMJ2PI72) and summing over M and M makin use

of equation (26), yields

B(1) 1 1 1_
B a dtj (31)JI J 2  (2Ji + 1)(2J 2 + 1) i

M <M jl'lj2M2IVt)j 1741J2742>

which, when substituted back into (30), gives the following expression

for the first-order term in A.

17



JM 'JI' M M F d1122 12 21
(32)

6J J16J J1 6 M M16 M,
x(J'4'J''I~t)IJ~l1 - 1 2 2 1 1 2 2

(22 +)(J 2+ 1) ini

Frthe second-order term we have

(1) ~ ~ i J5 J 4'MM
J1M122 122 1122 12

x [B 1; + B1J21=f dt~f dt2 ()2 (33)

M" M"

from which we may obtain B ()by a procedure analagous to that used to

obtain B()

B(2) =1 (t 2 j t1 dt
J1 2  2J + I (2J2 + tj2 dt, J J"J

all M (4

1 1 2r42IV(t1) 2JMJM

18JMJM 12/



and we may substitute this expression back into equation (33) to obtain
(2)

an expression for A

It is now clear how to obtain the kt h approximation for A and

B. We simply write down equation (28) for the kt h approximation,

set (J'J'MNM') = (JIJ 2MIM 2 ) and sum over M 1 and M2 . This gives a

relation analagous to (34) for the B( k ) in terms of known quantities and
the B's already calculated. Substitution of the resulting expression

into (27) gives the A k )  One may proceed in this manner to any desired

order in the expansion. We shall stop here, however, and calculate S(b)
(k) Mkin terms of the A ( ) and B ( )

2.3 Evaluation of S(b)

We now substitute our expansion of the T-matrix into equation

(6) to obtain an expression for S(b). To do this, we need the matrix

elements of T- 1(b), which are obtained from those of T(b) by unitarity.

(JMJ~~T-1(b) IjJ M J M>

(35)

< J 1 1J 2M2IT(b) IJMJIM2> •

Substituting the expansion (12) for the T-matrix, we first consider all

the terms which contain a factor A (0 ) . For these we may use the

unitarity of the V-C coefficients and equation (26) to perform the M-

sums explicitly. All the other terms must be handled separately, one at

a time. With this in mind, we arrive at the following result for S(b):

19



S(b) I - exp3fj2 + BJiJ2]

<Jf ("f) I M) , ("40><Jf(4)I()J (14, >

all M

JfJM2J J+1) A(2)* ;JMJ
x , , , jfff M22J~JM

(36)

, -A" + A(2) + ..1
[A J~iMii 2 M JjjM; j 2 2

x exP[4 B + B* + BJ + i ]

-ehe main contribution to equation (36) arises from the first two terms,

the last term being a small correction. In fact, it is only the last

term which is sensitive to the decomposition (22). Note also that

equation (36) is valid to all orders of perturbation theory, and that

contributions to S(b) in the nth order come from the AM with k <

(n - I), as noted earlier.

3. EVALUATION OF S(b) FOR HARMONIC EXPANSION OF POTENTIAL

In order to make the maximum use of the formalism we have developed,

we shall use the group theoretical properties of the interaction

Hamiltonian. This Hamiltonian may be written in terms of spherical

tensors as follows:

20
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V(t) - V kk2k[R(t)] C 1(1) C k2 (2)
klk 2 k

(37)

X + ji t] < k, 1 11) k 2 ) 1Ik(111 + P1)

where the CkV are defined by

Ckp1 r L= + Yk1 )j W (38)

and where is the ordinary spherical harmonic. Equation (37) is the

most general form for the interaction potential allowed by the rota-

tional invariance of the system; that is, if we rotate the coordinates

of molecule I and molecule 2 and also the vector R(t) between the two by

the same rotation, the interaction potential must remain unchanged. In

addition, invariance under coordinate inversion requires that k1 + k2 +

k be even.

As an example of equation 37, we have the usual electrostatic

multipolar expansion, wherein

Vk k Ck[R(t)] [ (2kl + 2k2) 1/2

kk=k (2k1) !(2k2) (-)k2 k(1) (2)

(39)

x R(t)- k1 -k 2 -1

+ k2

where q. is a multipolar moment (i.e., q, is the dipole moment, q2 is

the quadrupole moment, etc.).

21
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The required matrix elements of the interaction potential are given

by

<JMNJ2M IV(t) lJlMlJ 2 M2 >

= exp [i(w j j - Wi12)t] kj2k Vkjk2k[R(t)

(2JI + 1) 2J + 1<J(O)k(O)IJ,'(O)>

,,<(Ok OllJ?1(o > <J,(MI lk(,,, IJI(M,'1>

(40)

x <J2(M2)k2( 2)IJ (M?)><kL(,)kq(ua) k( i + ,Z >

(R)Ck,., + 11)

We now substitute this expression for the matrix elements into
(n) (n)

equations (31), (32), and (33) to obtain the A and B .  First, we

consider the B 2"The first-order term (32) is obtained simply by

summing equation (4) over the M's:

B (2 1 dt V000 ER(t)] = -iA (41)
J IJ 2  Tt f JIJ 2

22



For the second-order tern we substitute the matrix elements into (34) to

obtain

1 i 2  (ij) 2 (2J I + 1) (2J2 + 1) kdt 12lk2k

ED t2 ex[i (WJJ1 - 2~)(t 1 - t 2)] Vk1kk (t1) (2

x(O)k(O)fJ1(2)><J2O 2(O1 2(O>

" <J2 (M2)k (-'2) I 2 (M2-'2)> <J'2 (M2-1P2)k 2 ("2) 1 2

Now all M-summations but one may be performed using the unitarity of the

V-C coefficients to obtain

B(2 1Jil)( 2k + 1)

xja1 ~ft2 e [i(J -j 1 1 )(t1 - t 2 )] Vkk k (t1) (3

Sk 1 k 2k(t 2 ) Ckt[R(tj)] CkjR (t 2 )] -

23



In order to perform the indicated time integrations, we introduce

the Fourier transform of the interaction potential:

v kjk2(W, I dt e iWt Vkk (t) C [(t] (44)

Introducing this into equation (43) allows the time integrations to be

performed. Therefore, equation (43) reduces to

(2) (2)outer _ A(2) +1 (1)2 (5
BI2 SJlJ2  J1J2  2 J1J2

where

5(2)oter _1 <J(O)k1 (O)IJi'(O)>
2

S I2 2 y 2k 1 + 1 2k 2 + 1

k~k2k

(46)

x <J(O)k (O)lj",(O)> 2 -1 Ivklk2(j,,j; Ji 2

and

A =2 1 < Jl( O)kl(O)IiJ-(O)>2K J2(O)k2(O) IJ;(O)>2
J1J2  27rJw , (2k 1 + 1) (2k 2 + 1)
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and where A(1) is given by equation (41):AJ1J 2

() = I vO(o) (48)
J1IJ 2  1 00

All the B's have now been evaluated to second order. What remains

is the last term in equation (36), the so-called correction term. To

second order in the interaction potential, we have

s(2)corr <Jf(Mf) i(Mi)Jf()'1(M) I (Mi)>

JiJ;J2 J2 e2ji , 1)(2Jf , 1)
all M

x ) (1 ) (49)

AJM J M J Ni AMJM;J MJ Mi 49fMFM fMfJ2 2 ii 2 iiJ2

x B* + +J * 4- I B 3 2 +

We may now insert equation (31) into this to obtain

S(2)corr = 1 <Jf(Mf) 1(M) IJi(Mi)> (50)
i f;J2 t 2 j,, (2J i + 1)(2J + 1)

2
all M

x J. M' ~B* + B j, J ~J
<Jf(M)(M)Ji(MP)> exp f JfJ 2 + +

j dt
1 

<JfM JMIV(t) IJfMfJ 2 M2>*

foMP

xJ dt 2 <JiM! Mt2(t 2) IJiMiJ 2M 2 >

+A2M expB* J2 + BJJ2
i j2 jf 12 L f 2 1i 2J
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The matrix elements (40) may be substituted into the above and the M-

summations performed by standard methods. The result is

S (2)corr = y s(2 )middle

Ji f ;J2 a if;J '
J2

x exp[ I BfJ2 + Bfj + BjiJ2 + BJiJ ] (51)

+ A( 1 ) (1) exB* 1

where

- i / (2Ji + 1)(2Jf + I) W 1JJi

SiddJf;J 2 J h2 k 2- k. (2kl1 + 1) 2Wf+1kl;JiJf)

(52)r I x <Ji(O)k 1I (0) Ji(O)><Jf(O)k 1 (0) Jjf(O)X'j2 (O)k 2 (0) Ij _ ')> 2  (2

X v!k k2 IOJ - W~i 2

and we have

S(b) = 1 - exprB* + B 2 + S(2)corr (53)
Lj f 12  J 1 12J J Jfj ~2

where

B =A (1) (2)outer _ (2) + A(1)2 "/ (54)

j1J2 jiJ2 JlJ2 JlJ2 JiJ 2
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and where S(2)corr is given by equation (54) and A I
, S 2  

, and

A (2 ) are given by equations (51), (49), and (50), respectively. Note

that only S(2)corr is sensitive to the decomposition of equation 21; the

other terms in equation (53) do not depend on it at all.

It is appropriate at this time to remark on the similarity between

our theory and Anderson's theory. Note that each of the quantities

appearing in the above equations also appears in Anderson's theory.

They appear, however, in a very different form.

4. THE LINKED CLUSTER THEOREM

The following section is devoted to the simplification of the

preceding results and the justification of the exponential expansion by

use of a linked cluster theorem. We show first that matrix elements of

the interaction between different vibrational states may be ignored as

long as the potential contains the second- and higher-order forces from

the outset. If this is the case, then the interaction Hamiltonian acts

only on the rotational variables of the two molecules. We then show

that we may separate certain terms from all orders of perturbation

theory in the T-opera..or, and that the terms which are so separated may

be summed to obtain the exponential expansion obtained earlier by a

different method.

We first note that the above results simplify somewhat by observing

that the Fourier transforms in equation (44) are negligible when

w >> 2nv/b , (55)
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where v is the relative velocity of the collision and b is the collision

impact parameter. Taking v = 3 x 104 cm/s and b = 5 A, we obtain a

typical value of 20 cm- 1 for the cutoff frequency. This is comparable

to the rotational splittings of a molecule, but it is very small

compared to the splitting of the vibrational levels. Therefore,

contributions to the sums in equations (52) and (46) from vibrational

levels other than the ones corresponding to J1, J 2 may be neglected.

For the same reason, electronic levels other than the ground level give

no contribution to these sums.

For the A(2 ) term in equation (47), on the other hand, the situation

is different. For large values of the energy denominator, the integral

in t47) gives a contribution which is proportional to the inverse of the

energy difference. In fact, the contribution to this term from the far-

lying vibrational and electronic states is exactly what one would expect

if the energy of interaction between the molecules were calculated

according to Rayleigh-Schroedinger perturbation theory and added to V(t)

to obtain an effective potential. This summing over the far-lying

states may be performed to arbitrary order in perturbation theory and

yields the well-known Van der Waals forces (induction, dispersion,

etc.). We shall assume that these contributions have been included in

the potential from the outset.

If we require that the higher-order forces are included in the

potential, then we may therefore neglect all matrix elements of V

between states of different vibrational and electronic quantum numbers;

we therefore consider the potential to be a function only of the

rotational variables of the two molecules, and we include the dependence

of matrix elements on vibrational quantum numberb parametrically. Thus,

in a given vibrational level, the potential contains as operators

irreducible tensors which operate on the rotational variables of
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molecules I and 2. This reduction of the vector space has been assumed

implicitly in the preceding section; in particular, it means that all

sums over intermediate states are actually over states that belong to

the same electronic-vibrational manifold as the state under

consideration.

This reduction of the vector space has another important

consequence. To see this, we consider the expansion of V(t) into

irreducible tensors as given by (37). we consider the product of

several V's:

P(ti1t 2 ... tn) = V(tl)V(t2)'..V(tn) " (56)

Each of the factors in (56) is expandable in the form of equation 37; we

consider the products obtained by taking one term from each factor. If

(1) (1)
the tensorial rank of the first factor is kj1 k ) , the

(2) (2) (j) thsecond k1 2k 2  , etc., where k ) is the rank of the j term in the

space of molecule 1 and similarly for k2 then the above product is a

sum of terms, each of which is represented by the Kronecker product,

{(1) (2) (n)Jj ( ) (2) k(n)

x x..x Dk I Hk2 x D x.xD

(57)

a akk2 Dkl Dk2

kjk 2

where the Dk are irreducible representations of the rotation group, and

the coefficients ak1 k2 are determined by the properties of the rotation

group. The product of potentials in equation (56) corresponds to the

29



sum of (57) over all allowable values of kIj ) and k2 We shall be

interested in separating out from this product all the terms which have

kI = k2 = 0; i.e., the rotationally invariant part. Therefore, we

write

(58)

where the first term corresponds to that portion of equation 57

with kj = k2 = 0, and the remainder of equation (58) corresponds to (57)

with values different from kj = k2 = 0.

The first term of equation (58) has the important property that its

matrix elements between any two states are diagonal in all quantum

numbers. The fact that it is diagonal in the rotational quantum numbers

follows from its rotational invariance (kI = k2 = 0)' it is diagonal in

vibrational and electronic quantum numbers because of our reduction of

the vector space (i.e., separation of the higher-order forces).

With these preliminaries, we shall proceed with the derivation of

the linked cluster theorem. We shall define a linked cluster of order n

as a product of the form

t)] L

which contains no subproducts that transform like k1 *k 2 = (0,0). Ac-

cording to the above, a product of the form t )(t2)...(tn

which in general does contain subproducts which contain k I = k2 = 0

parts, may be broken up into parts which do not contain any k, = k2 = 0
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parts; i.e., into a sum of products of linked clusters. For example, we

have the product

(0
+ [V(ti)*'V(tm)gi(tm+i)* 'V(tn)](

The first term corresponds to a reduction of the original product into

two similar products, which may themselves be reduced further. This

procedure may be continued until it is impossible to reduce the clusters

any further; that is, until every part of equation (60) which transforms

according to k = k2 = 0 is also a linked cluster. The second term in

(60) is not reducible further as it stands, but may be reducible if

arranged differently. This process may be continued until the entire

product on the left-hand side of (60) has been broken up into a series

of linked clusters.

We now consider equation (24) for the symmetric part of the T-

matrix. We may substitute this relation into the power-series expansion

(11) for the T-matrix, and arrive at the following expression:

<JIJ11TO I I 1J2 (L)n

(2JM + 1)(2J2 + 1) MiM 2 n=0

(61)

xf dtl...in-dt nJlMIJ 2M2 IV(tl) .. (t)IJlMIJ 2M2 >
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7- ,n dtl...fn1dt
n=O . n(61)

x < 1 IJM2 [V(t O) ... V(tn) 1o ,(0) Ij I > .

In order to simplify what follows, we introduce the time-ordering

operator T, which has the following property.

f(t1) f(t2)' t I > t2

T fTO) fT 2) =(62)

f(t2 ) f(ti) ' ti < t2

Using this notation, we may write equation (61) as

<J1J21 1TO Ii2> = _l(Kn f " t f' dtn

(63)

x < ,'j2'21[T~, . ~n O"''' >

We now consider the effect of decomposing the right-hand side of this

equation into linked clusters according to (60). We consider the

decomposition of the nth term into k linked clusters of order 1, k2

linked clusters of order 2, etc. -The number of ways to do this is given

by
7

7J. Hubbard, Proc. Roy. Soc., A240 (1957), 539.
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= n!
Wkk ... k2 , (64)

2(11) (21) ... kI k2 ...

and the total n order contribution to (65) is given by the sum of all

such decompositions over all values of k1 , k2 , etc., subject to the

restriction

k I + 2k 2 + 3k 3 + ... =n (65)

When we perform the sum over n we obtain

<JJ 2 1IT0 1JJ2>
k k
1 2

(66)
x~ 1 .0 1l <x''

We may now remove the time-ordering operator, change back the

integration limits, and perform the sum over the k's to obtain the final

expression

2I 1J 2> E e [1] di

(67)

1 ( J2'2 V(tl)](0)ljlMJ 2 M2 >+[t

< JlM1 J 2 M.2 I[V(tl);V(t 2 )] (') lJ 1 MJ 2 M2 >+ .
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Thus, we have rederived the exponential expansion in a different

way. If we compare this result to equation (27), we see that the nth

order term in B is given by

B(n) = (L)n dt ... n- dt

(68)

x<JIl lJ2M2 ' V(t |) V()] 0t
n ) L JM 2M

By introducing our earlier notation into (68) we see that B(n) is given

by

o(n) = (_)n 2 1 1 +
J J2 i 2J, + 1J(2J J"J
1 2 (i 1(J 2 + i) 1212 1 2

all M

(69)

xf odtl..ftn-I dt[<J 1M 1J MV(tl)IJ'M'j'M\>...xC nt . ,_ 1M1J2M2 -I 1 2--/

< X <j;M'Ij;M2'1(tn)1J1 M1 12 M2 >1L I

where again the subscript L indicates that only linked clusters are to

be considered; that is, no subproduct of the matrix elements above

contains a rotationally invariant part. This is a generalization of the

Goldstone-Brueckner linked-cluster theorem 7'8 to degenerate systems.

7j. Hubbard, Proc. Roy. Soc., A240 (1957), 539.
8j. Goldstone, Proc. Roy. Soc., A239 (1957), 267.
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The results given above may be exhibited explicitly for the second-

order B(2) from the formulas (45), (46), (47), and (48). InuJiJ 2

particular, the k I = k2 = 0 term of (47) gives no contribution, since
the energy denominator Wj j - ~j,ii vanishes and since v 00(w) is an

I1 2 1 2 (2)outer 00
even function. The contribution to S from the term k = k 2 = 0

exactly cancels the term 1/2A (1)2 in (45) Therefore, B(2) is given as

in (71), the linked clusters being precisely the sums (46) and (47) with

k I = k = 0 left out. We shall write these terms as S(2)outer
'

and A ( ( respectively.

There is a further cancellation in S (2 )cO rr as given by equation

(51), which arises from the ki = k2 = 0 part of the sum there.

Therefore, the linked cluster theorem gives for the quantity S(b) to

second order,

S(b) = I - exp[B*J + B + S (2 )c r r (70)= 1 2 B1iJ21 +Ji if;J 2

where

wh reS 
(2 )corr = (2 )middle '

J i Jf;J JJf;J 2 J t

12

(71)

where S(2)middle' is as given in equation (52) with the k0 part
omitted, and where

B _iA 1 ) - 5 (2)outer' i,(2)' (72)
12 12 1J 1 ?
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The linked cluster theorem has provided both an alternative way to

derive the exponential expansion and also a simplification of the

theory, having eliminated extraneous terms from our equations (45),

(46), (47), (48), and (49). Of course, we could have noticed this

cancellation without going through the laborious procedure of deriving

the linked cluster theorem. However, our derivation has two advantages;

first, it gives a much simpler formula (69) for the higher-order B(n).s

and second (and more important), it provides us with some insight into

the nature of the exponential expansion and its relation to more

familiar expansions of this type used in other branches of physics.

5. COMPARISON TO EARLIER IMPACT THEORIES

It is easy to show that the earlier impact theories follow directly

from the one presented here, given certain approximations. The simplest

of these is the old phase-shift theory, 9 which follows directly from

(70). If we consider an intermolecular potential which contains no

angular dependence whatsoever--that is, if the potential contains only

k, = k, = 0 in the decomposition into irreducible tensor operators--then

our reduction of the vector space and the linked cluster theorem implies
thtal h (n) vanish except the first-order contribution, and all

the A( n ) vanish except AM . In this case, we have

BPhase shift = _i () (73)

JJ
j I 

and furthermore,

S(b) pha shift 1 - e il (74)

9 V. F. w,zsskopf, Phys. Zeits, 34 (1933), 1.
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where

A1 = (1) - A(') (75)
JiJ 2  JfJ2

This is the familiar phase shift result. 9

If we carry this type of analysis further, we may consider cases in

which the potential contains terms with some angular dependence. In

this case, we also consider the phase shift separately, but this time we

obtain higher-order contributions, which consist of all the imaginary

parts of the various BJ iJ:

= Im BfJ 2 - Im Bji3 2

(76)

= M (1) + A(2) - A
( 2 )

1 2 JfJ2 1 i2 JfJ2

At the same time we consider the other effects of the nonisotropic part

of the potential. One such effect is the reorientation of the radiating

molecule; the second is the possibility of an inelastic collision. 5  If

we single out all the terms in BJ j which have intermediate states of

the radiator which differ from J, ' then we may factor these out from

S(b) in the following manner:

Jel 2 exp[Re(B 3 f 322)] (77)

In order to obtain a simple expression for the rest of 'he terms, we

shall make the approximation that in equation (71) the terms B, J. and

B3i ), respectively. This is a qood approximation since S (2 )cor is

hR. C. cGrdon, J. Chem. Phys., -4 (1q66), _j 3.

3V. F. Weisskopf, Phys. Zoits, 34 (1q33), 1.
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small to begin with, and since the nonresonant terms in which this

approximation is made are small compared with the resonant terms. Also,

the BJ J factors are not expected to be strong functions of J 2 With

this in mind, the part of S(b) which has not yet been factored out may

be written as:

cos 2 (a/2) = exp[e( 2 + )]

(78)

S (2 )middle'
ii i J; J..J

J2

In equation (77), B J represents the part of BJ J which contains

intermediate states of the radiating molecule which differ from J, and

in (78) B"IJ 2 represents that part of Bi which contains no such

states. Clearly, equation (77) represents effects of inelastic

collisions, whereas equation (78) represents effects of reorientation.

Using equations (76), (77), and (78), we may write equation (70) as

S(b) 1 - P e cos 2 c/2) (79)
el

which is of the same form as Gordon's semiclassical expression for

S(b). With this in mind, we shall interpret Pel as the probability of

an elastic collision and a as the angle through which the angular

momentum is reoriented by the collision. In fact, if one were to make a

power series of equations (76) through (78), one would recover Gordon's
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equations (42 a) through (42 c), in which Gordon's theory is compared

with Anderson's theory. The theory presented here ip therefore, in some

senses, a quantum-mechanical version of Gordon's semiclassical theory.

It gives the three terms in (79) in their correct relationship to one

another; that is, it gives factors in a product rather than as three

separate additive terms, as Anderson's theory does.
[

On the other iand, one may obtain Anderson's theory simply by making

a power-series expansion of (70) in the interaction potential. Such an

expansion gives

5()=1 ~ ) -1 /^(1) - A(1 )

S (b) = 1  
2/

(80)

- (2)outer' - (2)outer' + ^(2 ) - i+ S(2)middle'
JJ2  - 2 iJ + i-A 2 i J Ji f;J2

f~~J 9 f 2 ' 2 i2 2

There is considerable cancellation in the above result, since

(2)outer 1 A(1) 2 = (2)outer and since
JIJ2 2 JIJ2 JI12

S (2)middle' - j:(1) L 1 ) = (2)middle (81)-fjJ i , 1 = T J J ifj, (81)
if,22 2 f2 i2 if 2

Therefore, the effect of the expansion is to remove the primes from the
(2)

S terms, and we are left with the result

S(b) = - iA(1) + 5 (2)outer + s(2)outer
i 2 f Jf2 i j2 f 2

(82)
+ c (2 )m idd le  + iA (2) - iA (2)

Ji ;J2 JJ JfJ 2

1P. W. Anderson, Phys. Rev., 76 (1949), 647.
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This is the expression given by Anderson, modified by the second-order

phase shift introduced by Sharma and Caledonia. 3  The fact that it is

derivable from our theory should not be surprising, since both theories
were obtained from the same theoretical framework. We note also that if

one further term were kept in the expansion, the phase shifts would be

multiplied by the same cutoff used by Sharma and Caledonia 3 for the

imaginary part of S(b).

Equation (70), however, is more than a simple rearrangement of the

Anderson theory; it contains a natural cutoff. The theory of Murphy and

Boggs4 also contains a cutoff, and in fact the interruption function

obtained by Murphy and Boggs is equal to, in our notation,

S(b)Murphy-Boggs = 1 - xp 2B + exp (83)2 LY f J2) i2
which has some similarity to our form but which suffers from several

defects. First of all, the reorientation effects are neglected; i.e.,

the S(2)middle term is entirely absent from (83). Second, equation (83)

contains the effects of initial and final states in an additive rather

than the correct multiplicative manner. Finally, the isotropic part of

the interaction is completely absent from (83), which makes the Murphy-

Boggs theory totally inapplicable to rotation-vibration spectra. The

last defect is partially a result of the ad hoc manner in which M-

averaging is performed in the theory.

We have' compared our theory to the major theories of impact

broadening and shifting. Our theory reduces to these in the appropriate

limits. For isotropic interactions, we arrive at the phase-shift

theory. We have arranged the terms in the theory so that they

3R. D. Sharma and G. E. Caledonia, J. Chem. Phys., 54 (1970), 434.
4J. S. Murphy and J. E. Boggs, J. Chem. Phys., 47 (1967), 691.
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correspond to terms in Gordon's theory. By expanding out our results,

we have arrived at Anderson's theory. We have shown that our result is

similar to the Murphy-Boggs theory, although we cannot reproduce Murphy-

Boggs theory, as we have reproduced the others. In the next section we

shall compare numerical results obtained with our theory with those

obtained with the most important of the others, the Anderson theory.

6. THEORY AND CALCULATIONS

In this section we comment on some aspects of the theory and perform

calculations. In particular, we shall show the connection between our

linked cluster theorem and the Goldstone-Brueckner theorem8 by the

familiar diagrammatic approach. We shall compare the cutoff obtained

here to the cutoff introduced by Anderson. We shall calculate the real

and imaginary parts of the broadening cross section in closed form for a

highly idealized case. Finally, we shall calculate the HC1 self-

broadening half-widths exactly for the 0 to 2 vibrational band.

6.1 Diagrammatic Representation

It is possible using a diagrammatic representation of the

intermolecular interaction to establish further the connection between

the linked cluster theorem obtained here and the more familiar theorems

associated with the many-body problem.7'8  In particular, consider the

simple interaction vertex shown in figure 1(a). This diagram shows two

solid lines representing molecular states, and a wavy line representing

an external field. Conservation of angular momentum at each vertex

implies that

7J. Hubbard, Proc. Roy. Soc., A240 (1957), 539.
8J. Goldstone, Proc. Roy. Soc., A239 (1957), 267.
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J + k =J' (84 a)

-~1 ~-1 -1

J + k =J' . (84 b)
-2 -2 -2

This relation gives the usual triangular inequalities. When

constructing more complicated diagrams, we must sum over all the M-

quantum numbers in closed loops.

The invariant part of the T-matrix element is given by the sum

over all possible closed-loop diagrams, as shown in figure 1(b). Note

that some of these diagrams are disconnected. The linked cluster

theorem proved earlier implies the factorization of such diagrams; the

factorization is such that B Ij2 (see equation (26)) contains no

disconnected parts, as shown in figure I(c).

+

k1 k2

_IJ 1J2

(a)

< J ,J 2 T00  J IJ 2 > = + + + +

(b)

Bj 1J2 = + +

(c)

Figure 1. Diagrammatic representation of intermolecular interaction:

(a) basic interaction vertex, in which solid lines represent the two-
molecule state. Wavy line represents external field; (b) expansion
of isotropic part of T-matrix, which includes the unlinked graphs;
(c) expansion of B given by linked cluster theorem, in which unlinked

graphs are absent.
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6.2 Shape of S(b)

It is of interest to investigate the differences between the

exponential cutoff derived here and the straight-line cutoff given by-

Anderson.1,2 The interruption functions are shown for a typical case in

figure 2. It can be seen that over most of the range of impact

parameter, the exponential cutoff yields a value for ReS(b) which is

less than Anderson's ReS(b). The oscillation of S(b) about the value

unity for small b does not occur in all cases and is exaggerated here

for emphasis. In general, it is a very small effect unless the phase-

shift terms completely overwhelm the S(2)outer terms.

((a)

bo

b -p-

Figure 2. Shape of interruption

function: curve (a) this work,
curve (b) Anderson theory.

1P. W. Anderson, Phys. Rev., 76 (1949), 647.
2p. W. Anderson, PhD Disserta-tion, Harvard University (1949).
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6.3 Evaluation of Cross Sections for Special Cases

Under certain conditions, the integral of S(b) over the impact

parameter may be performed in closed form. This will be true in general

if

(1) A given term in the potential dominates all other terms,

and

(2) For these terms, the only important contributions to S(b)

are the Stark and resonance terms.

Under these conditions, the only nonzero factors in S(b) are A 1
, the

( )outer
first-order phase shift, and S o , the second-order broadening

term. Each of these terms will be proportional to some power of the

impact parameter.

The largest terms in the potential which contribute to

A (1) are the induction and dispersion terms, which are proportional to

the inverse sixth power of the intermolecular distance. We may write

V 00 0 (R) =-A/R
6  , (85)

where the constant A depends on the vibrational quantum numbers. The

integral (41) for the first-order phase shift may be readily evaluated

for this potential to give

a() -3nA/(8fivbS) . (86)
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To evaluate S(2)outer we consider as an example the dipole-

dipole interaction between two linear molecules. We may write this

interaction in terms of spherical tensors as

Vd-d R3  m Im 2 I Im ICm 2 (2

(87)

2tM' I 4,M2 (R) <1 (i)\(2) 1m + m2)>

and therefore we have, from equation (36),

V (R) -/6 /R3~ (88)

Now the summation may be performed in (46) using this potential, and the

integrals in (44) may be evaluated to give6

(89)

where

f (k) 0 k 2(k + 1K(k + 3K2(k) (90)

4.6C. J. Tsao and B. Curnutte, J. Quant. Spect. Rad. Trans., 2 (1962),
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and where

k - (Wjs - (i)b/v " (91)

The V-C coefficients vanish for Stark splitting (J 1 = Ji' J 2 = If,

however, the molecules are identical, then one may obtain k = 0 by

setting J2 = J' and J' = J, (resonance). We shall assume that all other

contributions are small compared to the resonance contribution. In this

case, since f1 (k) is unity for k 0 0, we obtain:

S(2)uter = J1v1 2 <J (0)I(0) J(0)>2 j2(0)1(0)l I~(0)>2 (92)

where J2 = J I 1. Since the second-order phase shift vanishes on

resonance, and since the S (2)middle term vanishes for dipole-dipole

interactions, we have determined all contributions to S(b and we may

write

S(b) = 1 - exp[-i (a 0/b) 5 - (b0/b)j] (93)

where a and b 0 are given in terms of the coefficients in A (1) and
(2 ) outer

S

Using the expression (92) in equation (4), the resulting

integral may not be evaluated in closed form. However, if a 0 << b0 , we

may expand the imaginary part of the exponential to obtain

a - 21r b db{1 -(bo/b)
4 + i(a/b)e( ) (94)
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Evaluation of the integral yields

a= 2wbo2j r(j) , i-i r(-2)(aa/bo)5}

(95)

=2vbO2(1(0.8862) + i(0.3064)(ao/bo)5) I .

On the other hand, we may use the Sharma-Caledonia 3 cutoff in the

Anderson theory to obtain

a A = 2Tt f b db{(bO/b)4 + i(a 0 /b)l [I -(bo/b)4]} (96)

which may be evaluated to yield

GA= 27rfbO211 + i ~ob)

(97)

= 2rb02{ + i(0.1905) (aO/bO) 5}

Thus, there is a 10-percent difference between the real parts of the

cross section in the two theories, whereas Anderson's imaginary part is

a factor of 1.6 lower than ours. If we consider velocity averaging,

this will increase the imaginary part of the cross section by a factor

of 1.33 in both theories, but will have no effect on the real part of

the cross section.
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6.4 Exact Calculation for HCL Self-Broadening

As an illustration of the theory, we have performed exact

calculations of the self-broadening in the 0 to 2 vibrational band of

HCI. Interactions considered in the calculation were the dipole-dipole,

dipole-quadrupole, quadrupole-dipole, quadrupole-quadrupole, dipole-

octupole, and octupole-dipole interactions. Also considered were the

isotropic parts of the induction and dispersion interactions, for which

the difference of coefficients A in -A/r6  was taken to be

12280 cm- 1 A6 . Other contributions to the interatomic potential (which

may be important for foreign gas broadening or for cases where there is

no permanent dipole moment) were neglected.

Contributions to S(b) from the various interactions were

computed as in Tsao and Curnutte 6 and Isnard et al. 1 0 Equation (79) was

used for S(b) . Molecular parameters used in the calculation are those

given in table 1. The quantities W, 0, 0, and B are, respectively, the

dipole moment, quadrupole moment, octupole moment, and rotational energy

constant. Results of the calculation are shown in table 2 and figure

3. In the table, ImI is equal to max (JiJf) according to the usual

notation. We also show the results of a calculation using the same

parameters and using the Anderson cutoff. The experimental numbers are

an average of the data giver, in Toth et alll and Smith et al.12

6 C. J. Tsao and B. Curnutte, J. Quant. Spect. Rad. Trans., 2 (1962),
41.

10 P. Isnard, C. Boulet, and A. Levy, J. Quant. Spect. Rad. Trans., 13
(1973), 1433.

1 IR. A. Toth, R. P. Hunt, and E. K. Plyer, J. Mol. Spect., 35 (1970),
110.

1 2 A. Levy, E. Piolet, J. P. Bouanich, and C. Haeusler, J. Quant.
Spect. Rad. Trans., 10 (1970), 203.
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TABLE 1. MOLECILAR PARAMETERS USED TABLE 2. rOMPARISON OF EXPERIMENTAL AND

IN THE CALCULATIONS THEORETICAL kEsu.iUTS ki SELF-

BROADENINO

Upper* Lower* Units for wilths are 10
- 3 

cm-
1
/atm.

Quantity state state _______ ______

i (M) 1.167 1.1OR

IMl Experiment| ,! This Knierson

8 (D-A) 3.93 3.60 work theory

i (D-A
2
) 4.0 4.0 1 215 201 210

2 226 223 243

B (cm
- 

) 9.82R 10.440 3 234 230 2r2

*Values of the dipole moment 4 226 223 242

wore taken from Smith.
13  

The 5 207 201 217

equilibrium value for the *Calcult,N u'ill; tho interictinns icsribet
quadrupole moment is 1XLeeuw and in the text. Molx'u1.r pdrameters are liven in
D!namus,14 and the first term in t-ble 1.
Its vibrational dependence is
from Friedh.jnn and Kiel .

'  
The 260-

value of the octupcLe moment is
taken from Sharma and Caledonia

3

it is just an estimate, but seems
much more reasonable than that of

Isnard et a.1
0  

Rotational 250-
constants are from Smith.

13  I

2 240-
0/ /I 0

230-\

Figure 3. Self-broadened O 0
halfwidths of HCl: Solid
line, this work. Dashed U_ 220
line, Anderson cutoff. <
Circled points, experimental
data of Toth et al'I and
Levy et al. 1 2  210

0

200- n
1 2 3 4 5

IMl

3R. D. Sharma and G. E. Caledonia, J. Chem. Phys., 54 (1970), 434.
10P. Isnard, C. Boulet, and A. Levy, J. Quant. Spect. Rad. Trans., 13

(1973), 1433.
11R. A. Toth et al, J. Mol. Spect., 35 (1970), 110.
12A. Levy et al, J. Quant. Spect. Rad. Trans., 10 (1970), 203.
13F. G. Smith, J. Quant. Spect. Rad. Trans., 13 (1973), 711.
14F. H. Deleeuw and A. Dynamus, J. Mol. Spect., 48 (1973), 427.
15H. Friedmann and S. Kimel, J. Chem. Phys. 43 (1965), 3925.
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Agreement between our theory and the experimental data I s

excellent; moreover, it is much better than the agreement between

Anderson's theory ind experiment. In earlier calculations i usinq the

Anderson theory, it was necessary to invoke an abnormally large value of

the octupole moment (15 D-A 2 ) in order to match the experimental

results.

7. CONCLUSIONS

A theory of impact broadening and shift has been developed which

combines the best features of the Anderson, Gordon, and Murphy-Roqqs

theories in that it uses Anderson's expression for S(b) (equation (6)),

which is exact in the impact limit and employs an exponential expansion

of the T-matrix to ensure convergence of inteqrals over the impact

parameter. The final form for S(b) contains only terms which are in the

Anderson theory, but these terms are arranged in such a way that the

final form (79) for S(b) is similar to that of Gordon. Evaluation of

the broadening and shift cross sections for certain simple cases shows

that whereas the broadening is not particularly sensitive to the cutoff

procedure, the shift is. Similar conclusions apply to the influence nf

velocity averaging. Calculation of broadening parameters exactly for

HCI self-broadening indicates significant improvement over calculations

performed using Anderson's theory.
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